

IoT Systems – Final project

Class: IoT Systems Semester: Fall 2024
Project topic: Ambiance Monitoring and Music Recommendation System
Student: Abraham Garcia

1. Project description
a. General idea of your IoT system

The Ambiance Monitoring and Music Recommendation System is an IoT system
made to enhance users mood and vibes by tailoring music recommendations to the
local weather. It uses a temperature sensor (TMP36) and a humidity sensor
(HPP801A031) to determine local weather conditions, each sensor is connected to a
dedicated node that communicates data to the cloud using MQTT network protocol. The
system will use ThingSpeak cloud services for data storage, analysis, and processing to
trigger a Spotify API applet to recommend or play a Spotify playlist to match the mood.
ThingSpeak cloud services provide a dashboard to monitor real time data trend visuals.
b. System outcomes (profits to the end user)
 When certain weather conditions are met the system plays/recommends a
playlist on Spotify, matching the mood set by the local weather.
c. Technical description
 The IoT system will use a temperature sensor (TMP36) and a humidity sensor
(HPP801A031) each connected to an Arduino MKR1000. On the MKR1000 the reading
pin for humidity is connected to pin A2 and temperature is connected to A1. The
humidity sensor (HPP801A031) is two pins with one connected to ground and the other
connected to a 1MOhm resistor and pin A2 of the MKR1000 board, with the other side
of the resistor connected to ground. The temperature sensor (TMP36) is connected
from left to right: VCC, A1,and ground. Because the boards have the same name and
the names conflict when I try to run them both on the same computer each MKR1000
node will be connected to a different computer on the same network.
d. Diagrams

IoT Systems – Final project

IoT Systems – Final project

e. List of sensors

Vendor Model Comment
Adafruit TMP36 https://www.adafruit.com/product/165
DigiKey HPP801A031 https://www.digikey.com/en/products/detail/te-connectivity-meas

urement-specialties/HPP801A031/697731

f. List of nodes

Vendor Model Comment
Arduino MKR1000 https://store-usa.arduino.cc/products/arduino-mkr1000-wifi?srslti

d=AfmBOoo0s64_zQp0nLHiS4ST0EVpzSIQGZuaVH1xNOFsei
ecax4nTBiO

Arduino MKR1000 https://store-usa.arduino.cc/products/arduino-mkr1000-wifi?srslti
d=AfmBOoo0s64_zQp0nLHiS4ST0EVpzSIQGZuaVH1xNOFsei
ecax4nTBiO

g. List of other hardware components

Vendor Model Comment
 31 breadboard

piece x2

 Resistors 1M
Sparkfun 10 M-M jumper

cables
https://www.sparkfun.com/products/12796

Sparkfun Jumper wire kit https://www.sparkfun.com/products/124
Sparkfun x2 USB cable

Micro-B
https://www.sparkfun.com/products/13244

h. Selected cloud service
ThingSpeak and IFTTT

IoT Systems – Final project

2. Project operation
a. Describe how your project works

The Ambiance Monitoring and Music Recommendation System is an IoT system
uses a temperature sensor (TMP36) and a humidity sensor (HPP801A031) to determine
local weather conditions, each sensor is connected to a dedicated node that
communicates data to the cloud using MQTT network protocol. The system will use
ThingSpeak cloud services for data storage, analysis, and processing to trigger a
Spotify API applet to recommend or play a Spotify playlist to match the mood.

The IoT system will use a temperature sensor (TMP36) and a humidity sensor
(HPP801A031) each connected to an Arduino MKR1000. On the MKR1000 the reading
pin for humidity is connected to pin A2 and temperature is connected to A1. The
humidity sensor (HPP801A031) is two pins with one connected to ground and the other
connected to a 1MOhm resistor and pin A2 of the MKR1000 board, with the other side
of the resistor connected to ground. The temperature sensor (TMP36) is connected
from left to right: VCC, A1,and ground. Because the boards have the same name and
the names conflict when I try to run them both on the same computer each MKR1000
node will be connected to a different computer on the same network.

b. Describe what’s the data flow in your project
The data gets posted to two different topics in the same channel depending on if it's a
humidity or temperature reading. They then get posted to mqtt channel with temperature
going first then humidity. The subscriber is on a different device on the same network
and reads the data by subscribing to the channel topics. At the send time the data is
being sent to the subscriber the data is also being sent to ThingSpeak to trigger a
webhook.

i. specify publisher(s)
 temp
 humid

ii. specify subscriber(s)
 tmp
 hum
iii. specify the location and type of MQTT broker

https://test.mosquitto.org/, port: 1883 (i'm not giving my home ip address)
iv. specify the hierarchy / list of MQTT channels used

 There is only one channel sending both the humid and temp topic values.
It sends first the temperature value then the humidity value.
c. Describe cloud operation, including what’s the data processing mechanism

ThingSpeak receives data at the same time the MQTT broker receives it from the
sensor nodes. The data received from the node is displayed on the MATLAB
visualization dashboard. Using MATLAB Analysis to program a calculation of the

https://test.mosquitto.org/

IoT Systems – Final project

weather conditions and send a trigger using ThingHTTP to IFTTT to trigger the Spotify
applet to recommend a playlist.

3. Screenshots / pictures
a. Publisher(s) operation (data being sent to MQTT broker)

b. Subscriber(s) operation (data being received from MQTT broker)
temp:

IoT Systems – Final project

humid:

IoT Systems – Final project

c. Log of the channels activity (if broker permits)

IoT Systems – Final project

d. Picture(s) of wired circuit

IoT Systems – Final project

4. Describe technical challenges you had and how you solved them

My first challenge was to get the subscriber ide to read the mqtt topic values
because for some strange reason the terminal on the subscriber computer could read
the data from the publisher computer but not in the arduino ide. I fixed it by changing the
baud rate somehow.

5. Code listings for each node and cloud codes
final_pub:
#include <ArduinoMqttClient.h>

#include <WiFi101.h>

#define tempPin A1 //pin to read tmp

#define HUMID_PIN A2 //pin to read humid

char ssid[] = "SSID"; //network SSID, not sharing my network

char pass[] = "pass"; //network password, nor my password from home

//

unsigned long RH_Channel_No = 2762875;

const char * RH_WriteAPIKey = "VVXJEUB0OUPA5PH2";

unsigned long TMP_Channel_No = 2737117;

const char * TMP_WriteAPIKey = "Q68IWIYMTHIAA9RR";

WiFiClient wifiClient;

MqttClient mqttClient(wifiClient);

const char broker[] = "ip_address"; //not sharing personal ip address

int port = 1883; //MQTT broker port

//MQTT topics

const char tempTopic[] = "temp";

const char humidTopic[] = "humid";

const long interval = 2000; //interval to send msg

unsigned long previousMillis = 0;

void setup() {

 //Initialize serial and wait for port to open:

IoT Systems – Final project

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to WPA SSID: ");

 Serial.println(ssid);

 while (WiFi.begin(ssid, pass) != WL_CONNECTED) {

 // failed, retry

 Serial.print(".");

 delay(5000);

 }

 Serial.println("You're connected to the network");

 Serial.println();

 //connection to the broker

 Serial.print("Attempting to connect to the MQTT broker: ");

 Serial.println(broker);

 //connection to the broker failed

 if (!mqttClient.connect(broker, port)) {

 Serial.print("MQTT connection failed! Error code = ");

 Serial.println(mqttClient.connectError());

 while (1);

 }

 Serial.println("You're connected to the MQTT broker!");

 Serial.println();

}

void loop() {

 // call poll() regularly to allow the library to send MQTT keep alive

which

 // avoids being disconnected by the broker

 mqttClient.poll();

 unsigned long currentMillis = millis();

IoT Systems – Final project

 if (currentMillis - previousMillis >= interval) {

 // save the last time a message was sent

 previousMillis = currentMillis;

 //record sensor valuse

 float heat = analogRead(tempPin); //analog read of tmp

 float v = heat * (3300/1024); //convert volt to K

 float Celsius =(v - 500) / 10; //temp in C

 int humidVal = 1023 - (analogRead(HUMID_PIN)+1000); //RH% calculation

 // Publish Temperature

 //Serial.print("Sending temperature to topic: ");

 //Serial.println(tempTopic);

 Serial.println(Celsius);

 //mqttClient.beginMessage(tempTopic);

 mqttClient.println(Celsius);

 mqttClient.endMessage();

 // Publish Humidity

 //Serial.print("Sending humidity to topic: ");

 //Serial.println(humidTopic);

 Serial.println(humidVal);

 //mqttClient.beginMessage(humidTopic);

 mqttClient.println(humidVal);

 mqttClient.endMessage();

 //ThingSpeak.setField(2, Celsius);/////////////////////////////

 //ThingSpeak.writeFields(TMP_Channel_No, TMP_WriteAPIKey);/////

 //ThingSpeak.setField(1, humid_val);////////////////////////

 //ThingSpeak.writeFields(RH_Channel_No, RH_WriteAPIKey);////

 }

}

final_sub:
#include <ArduinoMqttClient.h>

#include <WiFi101.h>

//#include "secret_arduino.h" //contained the ssid and password of the

WiFi

IoT Systems – Final project

//WiFi that you want to be connected

char ssid[] = "ssd"; // your network SSID

char pass[] = "pass"; // your network password

WiFiClient wifiClient;

MqttClient mqttClient(wifiClient);

const char broker[] = "IP_Address"; //i'm not sharing my ip address

int port = 1883; //channel of the broker

//topics, you can change the name

const char topic[] = "tmp";

const char topic2[] = "hum";

//const char topic3[] = "real_unique_topic_3";

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(57600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 while (WiFi.begin(ssid, pass) != WL_CONNECTED) {

 // failed, retry

 Serial.print(".");

 delay(5000);

 }

 Serial.println("You're connected to the network");

 Serial.println();

 //connection to the broker

 Serial.print("Attempting to connect to the MQTT broker: ");

 Serial.println(broker);

 //connection to the broker failed

 if (!mqttClient.connect(broker, port)) {

IoT Systems – Final project

 Serial.print("MQTT connection failed! Error code = ");

 Serial.println(mqttClient.connectError());

 while (1);

 }

 Serial.println("You're connected to the MQTT broker!");

 Serial.println();

 // subscribe to a topic

 mqttClient.subscribe(topic);

 mqttClient.subscribe(topic2);

 mqttClient.onMessage(onMqttMessage);

}

void loop() {

 // call poll() regularly to allow the library to receive MQTT messages

and

 // send MQTT keep alive which avoids being disconnected by the broker

 mqttClient.poll();

}

//print the MQTT message

void onMqttMessage(int messageSize) {

 // we received a message, print out the topic and contents

 String topics = mqttClient.messageTopic();

 String values;

 //Serial.print(mqttClient.messageTopic());

 //Serial.print("', length ");

 //Serial.print(messageSize);

 //Serial.println(" bytes:");

 // use the Stream interface to print the contents

 while (mqttClient.available()) {

 Serial.println((int)mqttClient.read());

 }

 //Serial.println(values);

 Serial.println();

}

MATLAB ANALYSIS:

IoT Systems – Final project

readAPIKey = 'WU6ABUMH50QRC20V'; % Replace with your ThingSpeak Read API
Key
channelID = 2762875; % Replace with your ThingSpeak Channel ID
threshold1 = 20; % Humidity Threshold value and
threshold2 = 20; % Temperature Threshold value to trigger Spotify
playlisy follow

% IFTTT Webhook URL
iftttWebhookURL =
'https://maker.ifttt.com/trigger/Mood_Change/with/key/cvRPM4rxwvQmnVOQlZ
smSVweF0uS32lldGbjvuo3xZ4';

% Read data from both fields
field1 = thingSpeakRead(channelID, 'Fields', 1, 'ReadKey', readAPIKey);
field2 = thingSpeakRead(channelID, 'Fields', 2, 'ReadKey', readAPIKey);

% Check if both thresholds are met
if isscalar(field1) && isscalar(field2) && field1 > threshold1 && field2
> threshold2
 webwrite(iftttWebhookURL, 'value1', field1, 'value2', field2); %
trigger the webhook
 disp('Webhook triggered.');
else
 disp('Thresholds not met.');
end

IoT Systems – Final project

